Extensions 1→N→G→Q→1 with N=C6 and Q=C22xC6

Direct product G=NxQ with N=C6 and Q=C22xC6
dρLabelID
C22xC62144C2^2xC6^2144,197

Semidirect products G=N:Q with N=C6 and Q=C22xC6
extensionφ:Q→Aut NdρLabelID
C6:(C22xC6) = S3xC22xC6φ: C22xC6/C2xC6C2 ⊆ Aut C648C6:(C2^2xC6)144,195

Non-split extensions G=N.Q with N=C6 and Q=C22xC6
extensionφ:Q→Aut NdρLabelID
C6.1(C22xC6) = C6xDic6φ: C22xC6/C2xC6C2 ⊆ Aut C648C6.1(C2^2xC6)144,158
C6.2(C22xC6) = S3xC2xC12φ: C22xC6/C2xC6C2 ⊆ Aut C648C6.2(C2^2xC6)144,159
C6.3(C22xC6) = C6xD12φ: C22xC6/C2xC6C2 ⊆ Aut C648C6.3(C2^2xC6)144,160
C6.4(C22xC6) = C3xC4oD12φ: C22xC6/C2xC6C2 ⊆ Aut C6242C6.4(C2^2xC6)144,161
C6.5(C22xC6) = C3xS3xD4φ: C22xC6/C2xC6C2 ⊆ Aut C6244C6.5(C2^2xC6)144,162
C6.6(C22xC6) = C3xD4:2S3φ: C22xC6/C2xC6C2 ⊆ Aut C6244C6.6(C2^2xC6)144,163
C6.7(C22xC6) = C3xS3xQ8φ: C22xC6/C2xC6C2 ⊆ Aut C6484C6.7(C2^2xC6)144,164
C6.8(C22xC6) = C3xQ8:3S3φ: C22xC6/C2xC6C2 ⊆ Aut C6484C6.8(C2^2xC6)144,165
C6.9(C22xC6) = Dic3xC2xC6φ: C22xC6/C2xC6C2 ⊆ Aut C648C6.9(C2^2xC6)144,166
C6.10(C22xC6) = C6xC3:D4φ: C22xC6/C2xC6C2 ⊆ Aut C624C6.10(C2^2xC6)144,167
C6.11(C22xC6) = D4xC18central extension (φ=1)72C6.11(C2^2xC6)144,48
C6.12(C22xC6) = Q8xC18central extension (φ=1)144C6.12(C2^2xC6)144,49
C6.13(C22xC6) = C9xC4oD4central extension (φ=1)722C6.13(C2^2xC6)144,50
C6.14(C22xC6) = D4xC3xC6central extension (φ=1)72C6.14(C2^2xC6)144,179
C6.15(C22xC6) = Q8xC3xC6central extension (φ=1)144C6.15(C2^2xC6)144,180
C6.16(C22xC6) = C32xC4oD4central extension (φ=1)72C6.16(C2^2xC6)144,181

׿
x
:
Z
F
o
wr
Q
<